openrouteservice-py Documentation
Release 0.4

Nils Nolde

Nov 30, 2020

Contents

Description
Requirements
Installation
Testing

Usage
5.1

Basic example

5.2 OptMIZE TOULE v v o v e e i e
5.3 Decode Polyline e e e e e e
54 Dryrun e
5.5 Local ORSINStANCe i v i e
Support

Acknowledgements

Library reference

8.1 Submodules e e
8.2 openrouteservice.clientmodule L e
8.3 openrouteservice.convert module L. L L L e
8.4 openrouteservice.directionsmodule oL Lo
8.5 openrouteservice.isochronesmodule Lo oL L L
8.6 openrouteservice.distance_matrix module oL Lo
8.7 openrouteservice.geocode module L e
8.8 openrouteservice.elevationmodule Lo L
8.9 openrouteservice.placesmodule Lol L
8.10 openrouteservice.optimizationmodule Lo
8.11 openrouteservice.exceptions moduleol L L
8.12 Module contents e e e e e e e e e e
Indices and tables
0.1 QuickStart e e e e e
O. 1.1 DesCription v v v v i e e e e e e e e e e e e e e e e e e e
0.1.2 ReqUIEMENS . . .« . v v v v v e
9.1.3 Installation e e

11
11
12
12
12
12

15

17

9.1.4 Testing e e e e e 34

015 USAZE . o o v e e e e e e e e e e e e e 34
9.1.5.1 Basicexample e e e 34

9.1.5.2 OptimizZeroute vttt e e e e e e 35

9.1.53 DecodePolyline 35

0.1.54 Dryrun. e 35

9.1.55 Local ORSinstance 36

0.1.6 SUPPOTt . . . o e e e e e e e e 36

9.1.7 Acknowledgements L e 36

9.2 Libraryreference L e 36
9.2.1 Submodules 36

9.2.2 openrouteservice.clientmoduleo oL 36

9.2.3 openrouteservice.convertmodule L. Lo 37

9.2.4 openrouteservice.directions module oL oo L oo 37

9.2.5 openrouteservice.isochronesmodule L0000 Lo 40

9.2.6 openrouteservice.distance_matrix module 41

9.2.7 openrouteservice.geocode moduleo 42

9.2.8 openrouteservice.elevationmodule L L L L e 44

9.2.9 openrouteservice.placesmodule L e 45
9.2.10 openrouteservice.optimizationmodule 46
9.2.11 openrouteservice.exceptionsmodule o oo Lo 47
9.2.12 Modulecontents e e e e e e e e 48
Python Module Index 49
Index 51

openrouteservice-py Documentation, Release 0.4

Contents 1

https://github.com/GIScience/openrouteservice-py/actions
https://coveralls.io/github/GIScience/openrouteservice-py?branch=master
http://openrouteservice-py.readthedocs.io/en/latest/?badge=latest
https://badge.fury.io/py/openrouteservice
https://conda.anaconda.org/nilsnolde/openrouteservice
https://mybinder.org/v2/gh/GIScience/openrouteservice-py/master?filepath=examples%2Fbasic_example.ipynb

openrouteservice-py Documentation, Release 0.4

2 Contents

CHAPTER 1

Description

The openrouteservice library gives you painless access to the openrouteservice (ORS) routing API’s. It performs
requests against our API’s for

e directions

* isochrones

* matrix routing calculations

* places

* elevation

¢ Pelias geocoding

* Pelias reverse geocoding

* Pelias structured geocoding

* Pelias autocomplete

* Optimization
For further details, please visit:

* homepage

* ORS API documentation

* openrouteservice-py documentation
We also have a repo with a few useful examples here.
For support, please ask our forum.

By using this library, you agree to the ORS terms and conditions.

https://openrouteservice.org
https://openrouteservice.org/documentation/#/reference/directions/directions/directions-service
https://openrouteservice.org/documentation/#/reference/isochrones/isochrones/isochrones-service
https://openrouteservice.org/documentation/#/reference/matrix/matrix/matrix-service-(post)
https://github.com/GIScience/openpoiservice
https://github.com/GIScience/openelevationservice/
https://github.com/pelias/documentation/blob/master/search.md#available-search-parameters
https://github.com/pelias/documentation/blob/master/reverse.md#reverse-geocoding-parameters
https://github.com/pelias/documentation/blob/master/structured-geocoding.md
https://github.com/pelias/documentation/blob/master/autocomplete.md
https://github.com/VROOM-Project/vroom/blob/master/docs/API.md
https://openrouteservice.org
https://openrouteservice.org/documentation/
http://openrouteservice-py.readthedocs.io/en/latest/
https://github.com/GIScience/openrouteservice-examples/tree/master/python
https://ask.openrouteservice.org/c/sdks
https://openrouteservice.org/terms-of-service/

openrouteservice-py Documentation, Release 0.4

4 Chapter 1. Description

CHAPTER 2

Requirements

openrouteservice-py is tested against CPython 3.7, 3.8 and 3.9, and PyPy3.

For setting up a testing environment, install requirements—-dev.txt:

pip install -r requirements-dev.txt

openrouteservice-py Documentation, Release 0.4

6 Chapter 2. Requirements

CHAPTER 3

Installation

To install from PyPI, simply use pip:

’pip install openrouteservice

To install the latest and greatest from source:

’pip install git+git://github.com/GIScience/openrouteservice-pyRdevelopment

openrouteservice-py Documentation, Release 0.4

8 Chapter 3. Installation

CHAPTER 4

Testing

If you want to run the unit tests, see Requirements. cd to the library directory and run:

nosetests -v

—v flag for verbose output (recommended).

openrouteservice-py Documentation, Release 0.4

10 Chapter 4. Testing

CHAPTER B

Usage

For an interactive Jupyter notebook have a look on mybinder.org.

5.1 Basic example

import openrouteservice

coords = ((8.34234,48.23424),(8.34423,48.26424))
client = openrouteservice.Client (key='") # Specify your personal API key
routes = client.directions (coords)

print (routes)

For convenience, all request performing module methods are wrapped inside the c1ient class. This has the disad-
vantage, that your IDE can’t auto-show all positional and optional arguments for the different methods. And there are
alot!

The slightly more verbose alternative, preserving your IDE’s smart functions, is

import openrouteservice
from openrouteservice.directions import directions

coords = ((8.34234,48.23424),(8.34423,48.26424))

client = openrouteservice.Client (key='""') # Specify your personal API key
routes = directions(client, coords) # Now it shows you all arguments for
—directions

11

https://mybinder.org/v2/gh/GIScience/openrouteservice-py/master?filepath=examples%2Fbasic_example.ipynb

openrouteservice-py Documentation, Release 0.4

5.2 Optimize route

If you want to optimize the order of multiple waypoints in a simple Traveling Salesman Problem, you can pass a
optimize_waypoints parameter:

import openrouteservice

coords = ((8.34234,48.23424),(8.34423,48.26424), (8.34523,48.24424), (8.41423,48.
—21424))

client = openrouteservice.Client (key='") # Specify your personal API key

routes = client.directions (coords, profile='cycling-regular', optimize_waypoints=True)

print (routes)

5.3 Decode Polyline

By default, the directions API returns encoded polylines. To decode to a dict, which is a GeoJSON geometry object,
simply do

import openrouteservice
from openrouteservice import convert

coords = ((8.34234,48.23424),(8.34423,48.26424))
client = openrouteservice.Client (key='") # Specify your personal API key

decode_polyline needs the geometry only
geometry = client.directions (coords) ['routes'] [0]['geometry']

decoded = convert.decode_polyline (geometry)

print (decoded)

5.4 Dry run

Although errors in query creation should be handled quite decently, you can do a dry run to print the request and its
parameters:

import openrouteservice
coords = ((8.34234,48.23424),(8.34423,48.26424))

client = openrouteservice.Client ()
client.directions (coords, dry_run='true')

5.5 Local ORS instance

If you’re hosting your own ORS instance, you can alter the base_url parameter to fit your own:

12 Chapter 5. Usage

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://developers.google.com/maps/documentation/utilities/polylinealgorithm

openrouteservice-py Documentation, Release 0.4

import openrouteservice
coords = ((8.34234,48.23424),(8.34423,48.26424))

key can be omitted for local host
client = openrouteservice.Client (base_url="http://localhost/ors")

Only works if you didn't change the ORS endpoints manually
routes = client.directions (coords)

If you did change the ORS endpoints for some reason
you'll have to pass url and required parameters explicitly:
routes = client.request (

url="'/new_url',

post_json={

'coordinates': coords,

'profile': 'driving-car'
4

'format': 'geojson'

5.5. Local ORS instance 13

openrouteservice-py Documentation, Release 0.4

14 Chapter 5. Usage

CHAPTER O

Support

For general support and questions, contact our forum.

For issues/bugs/enhancement suggestions, please use https://github.com/GIScience/openrouteservice-py/issues.

15

https://ask.openrouteservice.org/c/sdks
https://github.com/GIScience/openrouteservice-py/issues

openrouteservice-py Documentation, Release 0.4

16 Chapter 6. Support

CHAPTER /

Acknowledgements

This library is based on the very elegant codebase from googlemaps.

17

https://github.com/googlemaps/google-maps-services-python

openrouteservice-py Documentation, Release 0.4

18 Chapter 7. Acknowledgements

CHAPTER 8

Library reference

8.1 Submodules

8.2 openrouteservice.client module

Core client functionality, common across all API requests.

class openrouteservice.client.Client (key=None, base_url="https://api.openrouteservice.org’,
timeout=60, retry_timeout=60, re-

quests_kwargs=None, retry_over_query_limit=True)
Bases: object

Performs requests to the ORS API services.

req
Returns request object. Can be used in case of request failure.

request (url, get_params=None, first_request_time=None, retry_counter=0, requests_kwargs=None,

post_json=None, dry_run=None)
Performs HTTP GET/POST with credentials, returning the body as JSON.

Parameters
e url (string)— URL path for the request. Should begin with a slash.

* get_params (dict or list of key/value tuples)— HTTP GET parame-
ters.

e first_request_time (datetime.datetime) — The time of the first request
(None if no retries have occurred).

* retry_counter (int)— The number of this retry, or zero for first attempt.

* requests_kwargs (dict)— Same extra keywords arg for requests as per __init__, but
provided here to allow overriding internally on a per-request basis.

* post_json (dict)— HTTP POST parameters. Only specified by calling method.

19

openrouteservice-py Documentation, Release 0.4

e dry_run (string) - If ‘true’, only prints URL and parameters. ‘true’ or ‘false’.
Raises

e ApiError — when the API returns an error.

* Timeout — if the request timed out.

Return type dict from JSON response.

8.3 openrouteservice.convert module

Converts Python types to string representations suitable for ORS API server.

openrouteservice.convert.decode_polyline (polyline, is3d=False)
Decodes a Polyline string into a GeoJSON geometry.

Parameters
* polyline (string)— An encoded polyline, only the geometry.
* is3d (boolean) - Specifies if geometry contains Z component.
Returns GeoJSON Linestring geometry
Return type dict

8.4 openrouteservice.directions module

Performs requests to the ORS directions API.

openrouteservice.directions.directions (client, coordinates, profile="driving-car’, for-
mat_out=None, format=’json’, preference=None,
units=None, language=None, geometry=None,
geometry_simplify=None, instructions=None, in-
structions_format=None, alternative_routes=None,
roundabout_exits=None, attributes=None, ma-
neuvers=None, radiuses=None, bearings=None,

skip_segments=None, continue_straight=None,
elevation=None, extra_info=None, sup-
press_warnings=None, optimized=None, op-
timize_waypoints=None, options=None, vali-

date=True, dry_run=None)
Get directions between an origin point and a destination point.

For more information, visit https://go.openrouteservice.org/documentation/.
Parameters
* coordinates — The coordinates tuple the route should be calculated from. In order of
visit.
* profile (string)— Specifies the mode of transport to use when calculating directions.
One of [“driving-car”, “driving-hgv”, “foot-walking”, “foot-hiking”, “cycling-regular”,

9%

“cycling-road”,’cycling-mountain”, “cycling-electric”,]. Default “driving-car”.

20 Chapter 8. Library reference

https://go.openrouteservice.org/documentation/

openrouteservice-py Documentation, Release 0.4

* format (str)— Specifies the response format. One of [‘json’, ‘geojson’, ‘gpx’]. Default
“json”. Geometry format for “json” is Google’s encodedpolyline. The GPX schema the re-
sponse is validated against can be found here: https://raw.githubusercontent.com/GIScience/
openrouteservice-schema/master/gpx/v 1/ors-gpx.xsd.

e format_ out —- DEPRECATED.

* preference (string) — Specifies the routing preference. One of [“fastest, “shortest”,
“recommended’]. Default “fastest”.

* units (string)— Specifies the distance unit. One of [“m”, “km”, “mi”]. Default “m”.

ELENTPpE]

* language (st ring)— Language for routing instructions. One of [“en”, “de”, “cn”, “es”,
L‘ru’7, 6‘dk”, 6£fr?,, “it”’ 6£n1,7, 6‘br”, “Se”, “tr”, ‘6gr79]. Default Eéen’,.

* language — The language in which to return results.
* geometry (boolean) — Specifies whether geometry should be returned. Default True.

* geometry_simplify (boolean)- Specifies whether to simplify the geometry. Default
False.

* instructions (boolean) — Specifies whether to return turn-by-turn instructions. De-
fault True.

* instructions_format (string) — Specifies the the output format for instructions.
One of [“text”, “html”]. Default “text”.

* alternative_routes (dict [int/float]) — Specifies whether alternative routes
are computed, and parameters for the algorithm determining suitable alternatives. Ex-
pects 3 keys: share_factor (float), target _count (int), weight_factor (float). More on
https://openrouteservice.org/dev/#/api-docs/v2/directions/{ profile }/geojson/post.

* roundabout_exits (boolean) — Provides bearings of the entrance and all passed
roundabout exits. Adds the ‘exit_bearings’ array to the ‘step’ object in the response. Default
False.

e attributes (list or tuple of strings)-Returnsroute attributes on [“detour-

CLINNT3

factor”, “percentage”]. Must be a list of strings. Default None.

* maneuvers — Specifies whether the maneuver object is included into the step object or
not. Default: false.

:type maneuvers bool
Parameters

e radiuses (1ist or tuple)— A list of maximum distances (measured in meters) that
limit the search of nearby road segments to every given waypoint. The values must be
greater than 0, the value of -1 specifies no limit in the search. The number of radiuses must
correspond to the number of waypoints. Default None.

* bearings (list or tuple or lists or tuples) — Specifies a list of pairs
(bearings and deviations) to filter the segments of the road network a waypoint can snap
to. For example bearings=[[45,10],[120,20]]. Each pair is a comma-separated list that can
consist of one or two float values, where the first value is the bearing and the second one
is the allowed deviation from the bearing. The bearing can take values between 0 and 360
clockwise from true north. If the deviation is not set, then the default value of 100 degrees
is used. The number of pairs must correspond to the number of waypoints. Setting opti-
mized=false is mandatory for this feature to work for all profiles. The number of bearings
corresponds to the length of waypoints-1 or waypoints. If the bearing information for the

8.4. openrouteservice.directions module 21

https://raw.githubusercontent.com/GIScience/openrouteservice-schema/master/gpx/v1/ors-gpx.xsd
https://raw.githubusercontent.com/GIScience/openrouteservice-schema/master/gpx/v1/ors-gpx.xsd
https://openrouteservice.org/dev/#/api-docs/v2/directions

openrouteservice-py Documentation, Release 0.4

last waypoint is given, then this will control the sector from which the destination waypoint
may be reached.

* skip_segments (1ist [int]) — Specifies the segments that should be skipped in the
route calculation. A segment is the connection between two given coordinates and the count-
ing starts with 1 for the connection between the first and second coordinate.

* continue_straight (boolean)— Forces the route to keep going straight at waypoints
restricting u-turns even if u-turns would be faster. This setting will work for all profiles
except for driving-*. In this case you will have to set optimized=false for it to work. True
or False. Default False.

* elevation (boolean) - Specifies whether to return elevation values for points. Default
False.

* extra_info (Iist or tuple of strings) - Returns additional information on

EEINT3 LEINT3 LEINT3

[“steepness”, “suitability”, “surface”, “waycategory”, “waytype”, “tollways”, “traildiffi-

LEINTS

culty”, “roadaccessrestrictions”’]. Must be a list of strings. Default None.

* suppress_warnings (bool)-Tells the system to not return any warning messages and
corresponding extra_info. For false the extra information can still be explicitly requested by
adding it with the extra_info parameter.

* optimized (bool) - If set False, forces to not use Contraction Hierarchies.

* options (dict) — Refer to https://openrouteservice.org/dev/#/api-docs/v2/
directions/{profile}/geojson/post for detailed documentation. Construct your own
dict() following the example of the minified options object. Will be converted to json
automatically.

* optimize_waypoints (bool) — If True, a Vroom instance (ORS optimization end-
point) will optimize the via waypoints, i.e. all coordinates between the first and the last.
It assumes the first coordinate to be the start location and the last coordinate to be the end
location. Only requests with a minimum of 4 coordinates, no routing options and fastest
weighting. Default False.

* validate (bool) — Specifies whether parameters should be validated before sending the
request. Default True.

* dry_run - Print URL and parameters without sending the request.
* dry run —boolean
Raises
* ValueError — When parameter has wrong value.
* TypeError — When parameter is of wrong type.
Returns sanitized set of parameters

Return type call to Client.request()

8.5 openrouteservice.isochrones module

Performs requests to the ORS isochrones APIL.

22 Chapter 8. Library reference

https://openrouteservice.org/dev/#/api-docs/v2/directions
https://openrouteservice.org/dev/#/api-docs/v2/directions
https://github.com/VROOM-Project/vroom

openrouteservice-py Documentation, Release 0.4

openrouteservice.isochrones.isochrones (client, locations, profile="driving-car’,

range_type="time’, range=None, intervals=None,
segments=None, interval=None, units=None,
location_type=None, smoothing=None, at-
tributes=None, validate=True, dry_run=None)

Gets travel distance and time for a matrix of origins and destinations.

Parameters

locations (1ist or tuple of 1ng,lat values)- One pair of Ing/lat values.

profile (string) — Specifies the mode of transport to use when calculating directions.
One of [“driving-car”, “driving-hgv”, “foot-walking”, “foot-hiking”, “cycling-regular”,

9%

“cycling-road”, “cycling-mountain”, “cycling-electric”,]. Default “driving-car”.
range_type — Set ‘time’ for isochrones or ‘distance’ for equidistants. Default ‘time’.
intervals (1ist of integer (s))—[SOON DEPRECATED] replaced by range.

range (list of integer (s))—Ranges to calculate distances/durations for. This can
be a list of multiple ranges, e.g. [600, 1200, 1400] or a single value list. In the latter case,
you can also specify the ‘interval’ variable to break the single value into more isochrones.
In meters or seconds.

segments (integer)— [SOON DEPRECATED] replaced by interval.

interval (integer)— Segments isochrones or equidistants for one ‘range’ value. Only
has effect if used with a single value ‘range’ value. In meters or seconds.

units (string)— Specifies the unit system to use when displaying results. One of [“m”,
“km”, “m”]. Default “m”.

location_type (string)— ‘start’ treats the location(s) as starting point, ‘destination’
as goal. Default ‘start’.

smoothing (float)— Applies a level of generalisation to the isochrone polygons gener-
ated. Value between O and 1, whereas a value closer to 1 will result in a more generalised
shape.

attributes (I1ist of string (s))— ‘area’ returns the area of each polygon in its
feature properties. ‘reachfactor’ returns a reachability score between 0 and 1. ‘total_pop’
returns population statistics from https://ghsl.jrc.ec.europa.eu/about.php. One or more of
[‘area’, ‘reachfactor’, ‘total_pop’]. Default ‘area’.

validate (bool) — Specifies whether parameters should be validated before sending the
request. Default True.

dry_run — Print URL and parameters without sending the request.

dry_run - boolean

Raises ValueError — When parameter has invalid value(s).

Return type call to Client.request()

8.6 openrouteservice.distance_matrix module

Performs requests to the ORS Matrix APIL.

8.6. openrouteservice.distance_matrix module 23

https://ghsl.jrc.ec.europa.eu/about.php

openrouteservice-py Documentation, Release 0.4

openrouteservice.distance_matrix.distance_matrix (client, locations, profile="driving-
car’, sources=None, destina-
tions=None, metrics=None, re-
solve_locations=None, units=None,
optimized=None, validate=True,
dry_run=None)
Gets travel distance and time for a matrix of origins and destinations.

Parameters

* locations (a single location, or a list of locations, where a
location is a list or tuple of lng,lat values)-Oneor more pairs of
Ing/lat values.

* profile (string) — Specifies the mode of transport to use when calculating directions.
One of [“driving-car”, “driving-hgv”, “foot-walking”, “foot-hiking”, “cycling-regular”,
“cycling-road”, “cycling-safe”, “cycling-mountain”, ‘“cycling-tour”, “cycling-electric”,].
Default “driving-car”.

* sources (1list or tuple)-— Alistofindices that refer to the list of locations (starting
with 0). If not passed, all indices are considered.

* destinations (1ist or tuple)— A list of indices that refer to the list of locations
(starting with 0). If not passed, all indices are considered.

* metrics (list of strings) — Specifies a list of returned metrics. One or more of
[“distance”, “duration’]. Default [‘duration’].

* resolve_locations (boolean) — Specifies whether given locations are resolved or
not. If set ‘true’, every element in destinations and sources will contain the name element
that identifies the name of the closest street. Default False.

* units (string)— Specifies the unit system to use when displaying results. One of [“m”,
“km”, “m”]. Default “m”.

* optimized (boolean) — Specifies whether Dijkstra algorithm (‘false’) or any available
technique to speed up shortest-path routing (‘true’) is used. For normal Dijkstra the number
of visited nodes is limited to 100000. Default True

* validate (bool)— Specifies whether parameters should be validated before sending the
request. Default True.

* dry_run - Print URL and parameters without sending the request.
* dry_run — boolean
Raises ValueError — When profile parameter has wrong value.

Return type call to Client.request()

8.7 openrouteservice.geocode module

Performs requests to the ORS geocode API (direct Pelias clone).

openrouteservice.geocode.pelias_autocomplete (client, text, focus_point=None,
rect_min_x=None, rect_min_y=None,
rect_max_x=None, rect_max_y=None,
country=None, sources=None, lay-

ers=None, validate=True, dry_run=None)
Autocomplete geocoding can be used alongside /search to enable real-time feedback. It represents a type-ahead

24 Chapter 8. Library reference

openrouteservice-py Documentation, Release 0.4

functionality, which helps to find the desired location, without to require a fully specified search term.

This endpoint queries directly against a Pelias instance. For fully documentation, please see https://github.com/
pelias/documentation/blob/master/autocomplete.md

Parameters

Raises

text (string) - Full-text query against search endpoint. Required.

focus_point — Focusses the search to be around this point and gives results within a 100
km radius higher scores.

rect_min_x (float)— Min longitude by which to constrain request geographically.
rect_min_y (float)— Min latitude by which to constrain request geographically.
rect_max_x (float)— Max longitude by which to constrain request geographically.
rect_max_y (float)— Max latitude by which to constrain request geographically.

country (st r)— Constrain query by country. Accepts a alpha-2 or alpha-3 digit ISO-3166
country codes.

sources (list of strings) - The originating source of the data. One or more of
[‘osm’, ‘oa’, ‘wof’, ‘gn’]. Currently only ‘osm’, ‘wof” and ‘gn’ are supported.

layers (list of strings)— The administrative hierarchy level for the query. Refer
to https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type for
details.

dry_run — Print URL and parameters without sending the request.

dry_run - boolean

ValueError — When parameter has invalid value(s).

TypeError — When parameter is of the wrong type.

Return type dict from JSON response

openrouteservice.geocode.pelias_reverse (client, point, circle_radius=None, sources=None,

layers=None, country=None, size=None, vali-
date=True, dry_run=None)

Reverse geocoding is the process of converting geographic coordinates into a human-readable address.

This endpoint queries directly against a Pelias instance.

Parameters

point (1ist or tuple of [Lon, Lat])- Coordinate tuple. Required.
circle_radius (integer) — Radius around point to limit query in km. Default 1.

sources (list of strings)— The originating source of the data. One or more of
[‘fosm’, ‘0a’, ‘wof’, ‘gn’]. Currently only ‘osm’, ‘wof” and ‘gn’ are supported.

layers (1list of strings)— The administrative hierarchy level for the query. Refer
to https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type for
details.

country (str)— Constrain query by country. Accepts a alpha-2 or alpha-3 digit ISO-3166
country codes.

size (integer)— The amount of results returned. Default 10.

dry_run — Print URL and parameters without sending the request.

8.7. openrouteservice.geocode module 25

https://github.com/pelias/documentation/blob/master/autocomplete.md
https://github.com/pelias/documentation/blob/master/autocomplete.md
https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type
https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type

openrouteservice-py Documentation, Release 0.4

* dry_run - boolean
Raises ValueError — When parameter has invalid value(s).
Return type dict from JSON response

openrouteservice.geocode.pelias_search (client, text, focus_point=None, rect_min_x=None,

rect_min_y=None, rect_max_x=None,
rect_max_y=None, circle_point=None, cir-
cle_radius=None, sources=None, layers=None,
country=None, size=None, validate=True,
dry_run=None)

Geocoding is the process of converting addresses into geographic coordinates.
This endpoint queries directly against a Pelias instance.
Parameters
* text (string) - Full-text query against search endpoint. Required.

* focus_point — Focusses the search to be around this point and gives results within a 100
km radius higher scores.

* rect_min_x (float)— Min longitude by which to constrain request geographically.
* rect_min_y (float)— Min latitude by which to constrain request geographically.
* rect_max_x (float)— Max longitude by which to constrain request geographically.
* rect_max_y (float)— Max latitude by which to constrain request geographically.

* circle point (list or tuple of (Long, Lat))- Geographical constraintin
form a circle.

* circle_radius (integer) — Radius of circle constraint in km. Default 50.

* sources (list of strings)— The originating source of the data. One or more of
[fosm’, ‘0a’, ‘wof’, ‘gn’]. Currently only ‘osm’, ‘wof” and ‘gn’ are supported.

layers (list of strings)— The administrative hierarchy level for the query. Refer
to https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type for
details.

country (st r)— Constrain query by country. Accepts a alpha-2 or alpha-3 digit ISO-3166
country code.

e size (integer)— The amount of results returned. Default 10.
* dry_run - Print URL and parameters without sending the request.
* dry run —boolean
Raises
* ValueError — When parameter has invalid value(s).
* TypeError — When parameter is of the wrong type.
Return type call to Client.request()

openrouteservice.geocode.pelias_structured (client, address=None, neighbourhood=None,
borough=None, locality=None, county=None,
region=None, postalcode=None, coun-
try=None, validate=True, dry_run=None)
With structured geocoding, you can search for the individual parts of a location. Structured geocoding is an
option on the search endpoint, which allows you to define a query that maintains the individual fields.

26 Chapter 8. Library reference

https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type

openrouteservice-py Documentation, Release 0.4

This endpoint queries directly against a Pelias instance. For full documentation, please see https://github.com/
pelias/documentation/blob/master/structured- geocoding.md

Parameters
* address (string)—Can contain a full address with house number or only a street name.

* neighbourhood (string) — Neighbourhoods are vernacular geographic entities that
may not necessarily be official administrative divisions but are important nonetheless.

Check all passed arguments convert._is_valid_args(locals())
Parameters

* borough (string)— Mostly known in the context of New York City, even though they
may exist in other cities.

* locality (string) — Localities are equivalent to what are commonly referred to as
cities.

* county (string)— Administrative divisions between localities and regions. Not as com-
monly used in geocoding as localities, but useful when attempting to disambiguate between
localities.

* region (string) — Normally the first-level administrative divisions within countries,
analogous to states and provinces in the United States and Canada. Can be a full name or
abbreviation.

* postalcode (integer)—Dictated by an administrative division, which is almost always
countries. Postal codes are unique within a country.

* country (string) — Highest-level divisions supported in a search. Can be a full name
or abbreviation.

* dry_run - Print URL and parameters without sending the request.
* dry_run - boolean
Raises TypeError — When parameter is of the wrong type.

Return type dict from JSON response

8.8 openrouteservice.elevation module

Performs requests to the ORS elevation API.

openrouteservice.elevation.elevation_line (client, format_in, geometry, for-
mat_out="geojson’, dataset="srtm’, vali-

date=True, dry_run=None)
POSTs 2D point to be enriched with elevation.

Parameters

* format_in (string) — Format of input geometry. One of [‘geojson’, ‘polyline’, ‘en-
codedpolyline’]

* geometry (depending on format_in, either list of coordinates,
LineString geojson or string)- Point geometry

* format_out (string)— Format of output geometry, one of [‘geojson’, ‘polyline’, ‘en-
codedpolyline’]

* dataset (string)— Elevation dataset to be used. Currently only SRTM v4.1 available.

8.8. openrouteservice.elevation module 27

https://github.com/pelias/documentation/blob/master/structured-geocoding.md
https://github.com/pelias/documentation/blob/master/structured-geocoding.md

openrouteservice-py Documentation, Release 0.4

* dry_run - Print URL and parameters without sending the request.
* dry_run - boolean

Returns correctly formatted parameters

Return type Client.request()

openrouteservice.elevation.elevation_point (client, format_in, geometry, for-
mat_out="geojson’, dataset="srtm’, vali-
date=True, dry_run=None)
POSTs 2D point to be enriched with elevation.

Parameters
e format_in (string) - Format of input geometry. One of [‘geojson’, ‘point’]

*» geometry (depending on format_in, either list of coordinates
or Point geojson)-— Point geometry

* format_out (string)— Format of output geometry, one of [‘geojson’, ‘point’]
* dataset (string)— Elevation dataset to be used. Currently only SRTM v4.1 available.
* dry_run - Print URL and parameters without sending the request.
e dry_run - boolean
Returns correctly formatted parameters

Return type Client.request()

8.9 openrouteservice.places module

Performs requests to the ORS Places APIL.

openrouteservice.places.places (client, request, geojson=None, bbox=None, buffer=None, fil-
ter_category_ids=None, filter_category_group_ids=None, fil-
ters_custom=None, limit=None, sortby=None, validate=True,

dry_run=None)
Gets POT’s filtered by specified parameters.

Parameters

* request (string) — Type of request. One of [‘pois’, ‘list’, ‘stats’]. ‘pois’: returns
geojson of pois; ‘stats’: returns statistics of passed categories; ‘list’: returns mapping of
category ID’s to textual representation.

* geojson (dict)— GeoJSON dict used for the query.
* buffer — Buffers geometry of ‘geojson’ or ‘bbox’ with the specified value in meters.

» filter category_ids — Filter by ORS custom category IDs. See https://github.com/
GIScience/openrouteservice-docs#places-response for the mappings.

* filter category_group_ids — Filter by ORS custom high-level category groups.
See https://github.com/GIScience/openrouteservice-docs#places-response for the map-
pings.

*» filters_custom (dict of lists/str)— Specify additional filters by key/value.

Default ORS filters are ‘name’: free text ‘wheelchair’: [‘yes’, ‘limited’, ‘no’, ‘designated’]
‘smoking’: [‘dedicated’,’yes’, separated’,’isolated’, ‘no’, ‘outside’] ‘fee’: [‘yes’,’no’, ‘str’]

* limit (integer base_url="http://localhost:5000’) — limit for POI queries.

28 Chapter 8. Library reference

https://github.com/GIScience/openrouteservice-docs#places-response
https://github.com/GIScience/openrouteservice-docs#places-response
https://github.com/GIScience/openrouteservice-docs#places-response
http://localhost:5000

openrouteservice-py Documentation, Release 0.4

* sortby (string) — Sorts the returned features by ‘distance’ or ‘category’. For re-
quest="pois’ only.

* dry_run - Print URL and parameters without sending the request.
e dry_run - boolean

Return type call to Client.request()

8.10 openrouteservice.optimization module

Performs requests to the ORS optimization API.

class openrouteservice.optimization.Job (id, location=None, location_index=None, ser-
vice=None, amount=None, skills=None, prior-
ity=None, time_windows=None)
Bases: object

Class to create a Job object for optimization endpoint.

Full documentation at https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#jobs.

class openrouteservice.optimization.Shipment (pickup=None, delivery=None,
amount=None, skills=None, prior-
ity=None)

Bases: object
Class to create a Shipment object for optimization endpoint.
Full documentation at https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#shipments.

class openrouteservice.optimization.ShipmentStep (id=None, location=None, loca-
tion_index=None, service=None,

time_windows=None)
Bases: object

Class to create a Shipment object for optimization endpoint.

Full documentation at https://github.com/VROOM-Project/vroom/blob/master/docs/ API.md#shipments.

class openrouteservice.optimization.Vehicle (id, profile="driving-car’, start=None,
start_index=None, end=None,
end_index=None, capacity=None,

skills=None, time_window=None)
Bases: object

Class to create a Vehicle object for optimization endpoint.
Full documentation at https://github.com/VROOM-Project/vroom/blob/master/docs/ APL.md#vehicles.

openrouteservice.optimization.optimization (client, jobs=None, vehicles=None, ship-
ments=None, matrix=None, geometry=None,

dry_run=None)
Optimize a fleet of vehicles on a number of jobs.

For more information, visit https://github.com/VROOM-Project/vroom/blob/master/docs/API.md.

Example:

>>> from openrouteservice import Client, optimization
>>> coordinates = [[8.688641, 49.420577], [8.680916, 49.415776]]
>>> jobs, vehicles = list (), list()

(continues on next page)

8.10. openrouteservice.optimization module 29

https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#jobs
https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#shipments
https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#shipments
https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#vehicles
https://github.com/VROOM-Project/vroom/blob/master/docs/API.md

openrouteservice-py Documentation, Release 0.4

(continued from previous page)

>>>

>>>
>>>

for idx, coord in enumerate (coordinates) :
jobs.append (optimization.Job (id=idx, location=coord))
vehicles.append (optimization.Vehicle (id=idx, location=coord))
api = Client (key='somekey")
result = api.optimization(jobs=jobs, vehicles=vehicles)

Parameters
* jobs (1ist of Job)— The Job objects to fulfill.

* vehicles (1ist of Vehicle) - The vehicles to fulfill the openrouteservice.
optimization.Job’s.

shipments (1ist of Shipment)— The Shipment objects to fulfill.

* matrix (list of lists of int)— Specify a custom cost matrix. If not specified,
it will be calculated with the openrouteservice.matrix.matrix () endpoint.

geometry (bool) — If the geometry of the resulting routes should be calculated. Default

False.
* dry_run - Print URL and parameters without sending the request.
* dry_run - boolean
Returns Response of optimization endpoint.

Return type dict

8.11 openrouteservice.exceptions module

Defines exceptions that are thrown by the ORS client.

exception openrouteservice.exceptions.ApiError (status, message=None)
Bases: exceptions.Exception

Represents an exception returned by the remote API.

exception openrouteservice.exceptions.HTTPError (status_code)
Bases: exceptions.Exception

An unexpected HTTP error occurred.

exception openrouteservice.exceptions.Timeout
Bases: exceptions.Exception

The request timed out.

exception openrouteservice.exceptions.ValidationError (errors)
Bases: exceptions.Exception

Something went wrong during cerberus validation

8.12 Module contents

openrouteservice.get_ordinal (number)
Produces an ordinal (1st, 2nd, 3rd, 4th) from a number

30 Chapter 8.

Library reference

openrouteservice-py Documentation, Release 0.4

* genindex
* modindex

e search

8.12. Module contents 31

openrouteservice-py Documentation, Release 0.4

32 Chapter 8. Library reference

CHAPTER 9

Indices and tables

9.1 Quickstart

9.1.1 Description
The openrouteservice library gives you painless access to the openrouteservice (ORS) routing APT’s. It performs
requests against our API’s for
e directions
* isochrones
e matrix routing calculations
* places
e elevation
* Pelias geocoding
* Pelias reverse geocoding
¢ Pelias structured geocoding
* Pelias autocomplete

» Optimization

33

https://github.com/GIScience/openrouteservice-py/actions
https://coveralls.io/github/GIScience/openrouteservice-py?branch=master
http://openrouteservice-py.readthedocs.io/en/latest/?badge=latest
https://badge.fury.io/py/openrouteservice
https://conda.anaconda.org/nilsnolde/openrouteservice
https://mybinder.org/v2/gh/GIScience/openrouteservice-py/master?filepath=examples%2Fbasic_example.ipynb
https://openrouteservice.org
https://openrouteservice.org/documentation/#/reference/directions/directions/directions-service
https://openrouteservice.org/documentation/#/reference/isochrones/isochrones/isochrones-service
https://openrouteservice.org/documentation/#/reference/matrix/matrix/matrix-service-(post)
https://github.com/GIScience/openpoiservice
https://github.com/GIScience/openelevationservice/
https://github.com/pelias/documentation/blob/master/search.md#available-search-parameters
https://github.com/pelias/documentation/blob/master/reverse.md#reverse-geocoding-parameters
https://github.com/pelias/documentation/blob/master/structured-geocoding.md
https://github.com/pelias/documentation/blob/master/autocomplete.md
https://github.com/VROOM-Project/vroom/blob/master/docs/API.md

openrouteservice-py Documentation, Release 0.4

For further details, please visit:

* homepage

* ORS API documentation

* openrouteservice-py documentation
We also have a repo with a few useful examples here.
For support, please ask our forum.

By using this library, you agree to the ORS terms and conditions.

9.1.2 Requirements

openrouteservice-py is tested against CPython 3.7, 3.8 and 3.9, and PyPy3.

For setting up a testing environment, install requirements-dev.txt:

pip install -r requirements-dev.txt

9.1.3 Installation

To install from PyPI, simply use pip:

’pip install openrouteservice

To install the latest and greatest from source:

’pip install git+git://github.com/GIScience/openrouteservice-pyRdevelopment

9.1.4 Testing

If you want to run the unit tests, see Requirements. cd to the library directory and run:

nosetests -v

—v flag for verbose output (recommended).

9.1.5 Usage

For an interactive Jupyter notebook have a look on mybinder.org.

9.1.5.1 Basic example

import openrouteservice

coords = ((8.34234,48.23424),(8.34423,48.26424))
client = openrouteservice.Client (key="") # Specify your personal API key
routes = client.directions (coords)

print (routes)

34 Chapter 9. Indices and tables

https://openrouteservice.org
https://openrouteservice.org/documentation/
http://openrouteservice-py.readthedocs.io/en/latest/
https://github.com/GIScience/openrouteservice-examples/tree/master/python
https://ask.openrouteservice.org/c/sdks
https://openrouteservice.org/terms-of-service/
https://mybinder.org/v2/gh/GIScience/openrouteservice-py/master?filepath=examples%2Fbasic_example.ipynb

openrouteservice-py Documentation, Release 0.4

For convenience, all request performing module methods are wrapped inside the client class. This has the disad-
vantage, that your IDE can’t auto-show all positional and optional arguments for the different methods. And there are
alot!

The slightly more verbose alternative, preserving your IDE’s smart functions, is

import openrouteservice
from openrouteservice.directions import directions

coords = ((8.34234,48.23424), (8.34423,48.26424))
client = openrouteservice.Client (key='") # Specify your personal API key

routes = directions(client, coords) # Now it shows you all arguments for
—directions

9.1.5.2 Optimize route

If you want to optimize the order of multiple waypoints in a simple Traveling Salesman Problem, you can pass a
optimize_waypoints parameter:

import openrouteservice

coords = ((8.34234,48.23424),(8.34423,48.26424), (8.34523,48.24424), (8.41423,48.
—21424))

client = openrouteservice.Client (key='") # Specify your personal API key

routes = client.directions (coords, profile='cycling-regular', optimize_waypoints=True)

print (routes)

9.1.5.3 Decode Polyline

By default, the directions API returns encoded polylines. To decode to a dict, which is a GeoJSON geometry object,
simply do

import openrouteservice
from openrouteservice import convert

coords = ((8.34234,48.23424),(8.34423,48.26424))
client = openrouteservice.Client (key='") # Specify your personal API key

decode_polyline needs the geometry only
geometry = client.directions (coords) ['routes'][0]['geometry']

decoded = convert.decode_polyline (geometry)

print (decoded)

9.1.5.4 Dry run

Although errors in query creation should be handled quite decently, you can do a dry run to print the request and its
parameters:

9.1. Quickstart 35

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://developers.google.com/maps/documentation/utilities/polylinealgorithm

openrouteservice-py Documentation, Release 0.4

import openrouteservice

coords ((8.34234,48.23424), (8.34423,48.26424))

client = openrouteservice.Client ()
client.directions (coords, dry_run='true')

9.1.5.5 Local ORS instance

If you’re hosting your own ORS instance, you can alter the base_url parameter to fit your own:

import openrouteservice
coords = ((8.34234,48.23424),(8.34423,48.26424))

key can be omitted for local host
client = openrouteservice.Client (base_url="http://localhost/ors")

Only works if you didn't change the ORS endpoints manually
routes = client.directions (coords)

If you did change the ORS endpoints for some reason
you'll have to pass url and required parameters explicitly:
routes = client.request (

url="'/new_url',

post_json={

'coordinates': coords,
'profile': 'driving-car',
'format': 'geojson'

9.1.6 Support

For general support and questions, contact our forum.

For issues/bugs/enhancement suggestions, please use https://github.com/GIScience/openrouteservice-py/issues.

9.1.7 Acknowledgements

This library is based on the very elegant codebase from googlemaps.

9.2 Library reference

9.2.1 Submodules

9.2.2 openrouteservice.client module

Core client functionality, common across all API requests.

36 Chapter 9. Indices and tables

https://ask.openrouteservice.org/c/sdks
https://github.com/GIScience/openrouteservice-py/issues
https://github.com/googlemaps/google-maps-services-python

openrouteservice-py Documentation, Release 0.4

class openrouteservice.client.Client (key=None, base_url="https://api.openrouteservice.org’,
timeout=60, retry_timeout=60, re-

quests_kwargs=None, retry_over_query_limit=True)
Bases: object

Performs requests to the ORS API services.

req
Returns request object. Can be used in case of request failure.

request (url, get_params=None, first_request_time=None, retry_counter=0, requests_kwargs=None,

post_json=None, dry_run=None)
Performs HTTP GET/POST with credentials, returning the body as JSON.

Parameters
* url (string)— URL path for the request. Should begin with a slash.

* get_params (dict or list of key/value tuples)— HTTP GET parame-
ters.

 first_request_time (datetime.datetime) — The time of the first request
(None if no retries have occurred).

* retry_counter (int)— The number of this retry, or zero for first attempt.

* requests_kwargs (dict)— Same extra keywords arg for requests as per __init__, but
provided here to allow overriding internally on a per-request basis.

* post_json (dict)— HTTP POST parameters. Only specified by calling method.

e dry_run (string) - If ‘true’, only prints URL and parameters. ‘true’ or ‘false’.
Raises

e ApiError — when the API returns an error.

* Timeout — if the request timed out.

Return type dict from JSON response.

9.2.3 openrouteservice.convert module

Converts Python types to string representations suitable for ORS API server.

openrouteservice.convert.decode_polyline (polyline, is3d=False)
Decodes a Polyline string into a GeoJSON geometry.

Parameters
* polyline (string)— An encoded polyline, only the geometry.
* is3d (boolean) — Specifies if geometry contains Z component.
Returns GeoJSON Linestring geometry

Return type dict

9.2.4 openrouteservice.directions module

Performs requests to the ORS directions API.

9.2. Library reference

37

openrouteservice-py Documentation, Release 0.4

openrouteservice.directions.directions (client, coordinates, profile="driving-car’, for-
mat_out=None, format="json’, preference=None,
units=None, language=None, geometry=None,
geometry_simplify=None, instructions=None, in-
structions_format=None, alternative_routes=None,
roundabout_exits=None, attributes=None, ma-
neuvers=None, radiuses=None, bearings=None,

skip_segments=None, continue_straight=None,
elevation=None, extra_info=None, sup-
press_warnings=None, optimized=None, op-
timize_waypoints=None, options=None, vali-

date=True, dry_run=None)
Get directions between an origin point and a destination point.

For more information, visit https://go.openrouteservice.org/documentation/.
Parameters

* coordinates — The coordinates tuple the route should be calculated from. In order of
visit.

* profile (string)— Specifies the mode of transport to use when calculating directions.
One of [“driving-car”, “driving-hgv”, “foot-walking”, “foot-hiking”, “cycling-regular”,

LEINT3

“cycling-road”,’cycling-mountain”, “cycling-electric”,]. Default “driving-car”.

» format (str)— Specifies the response format. One of [‘json’, ‘geojson’, ‘gpx’]. Default
“json”. Geometry format for “json” is Google’s encodedpolyline. The GPX schema the re-
sponse is validated against can be found here: https://raw.githubusercontent.com/GIScience/
openrouteservice-schema/master/gpx/v1/ors-gpx.xsd.

e format_out —- DEPRECATED.

* preference (string) — Specifies the routing preference. One of [“fastest, “shortest”,
“recommended’]. Default “fastest”.

* units (string)— Specifies the distance unit. One of [“m”, “km”, “mi”]. Default “m”.

ELINTRpE)

* language (string)— Language for routing instructions. One of [“en”, “de”, “cn”, “es”,
‘Aruﬁi, 4‘dk’7’ G‘fr”’ “it”’ 4‘n15’, 4‘br?7’ “Se”’ “tr”’ Aégr’?]' Default Aéen’7.

* language — The language in which to return results.
* geometry (boolean)— Specifies whether geometry should be returned. Default True.

* geometry_simplify (boolean)- Specifies whether to simplify the geometry. Default
False.

* instructions (boolean) — Specifies whether to return turn-by-turn instructions. De-
fault True.

* instructions_format (string) — Specifies the the output format for instructions.
One of [“text”, “html”]. Default “text”.

* alternative_routes (dict[int/float]) — Specifies whether alternative routes
are computed, and parameters for the algorithm determining suitable alternatives. Ex-
pects 3 keys: share_factor (float), target_count (int), weight_factor (float). More on
https://openrouteservice.org/dev/#/api-docs/v2/directions/{ profile }/geojson/post.

* roundabout_exits (boolean) — Provides bearings of the entrance and all passed
roundabout exits. Adds the ‘exit_bearings’ array to the ‘step’ object in the response. Default
False.

38 Chapter 9. Indices and tables

https://go.openrouteservice.org/documentation/
https://raw.githubusercontent.com/GIScience/openrouteservice-schema/master/gpx/v1/ors-gpx.xsd
https://raw.githubusercontent.com/GIScience/openrouteservice-schema/master/gpx/v1/ors-gpx.xsd
https://openrouteservice.org/dev/#/api-docs/v2/directions

openrouteservice-py Documentation, Release 0.4

e attributes(list or tuple of strings)-Returnsroute attributes on [“detour-

CLINNY3

factor”, “percentage”]. Must be a list of strings. Default None.

* maneuvers — Specifies whether the maneuver object is included into the step object or
not. Default: false.

‘type maneuvers bool
Parameters

* radiuses (1ist or tuple)— A list of maximum distances (measured in meters) that
limit the search of nearby road segments to every given waypoint. The values must be
greater than 0, the value of -1 specifies no limit in the search. The number of radiuses must
correspond to the number of waypoints. Default None.

* bearings (I1ist or tuple or lists or tuples) — Specifies a list of pairs
(bearings and deviations) to filter the segments of the road network a waypoint can snap
to. For example bearings=[[45,10],[120,20]]. Each pair is a comma-separated list that can
consist of one or two float values, where the first value is the bearing and the second one
is the allowed deviation from the bearing. The bearing can take values between 0 and 360
clockwise from true north. If the deviation is not set, then the default value of 100 degrees
is used. The number of pairs must correspond to the number of waypoints. Setting opti-
mized=false is mandatory for this feature to work for all profiles. The number of bearings
corresponds to the length of waypoints-1 or waypoints. If the bearing information for the
last waypoint is given, then this will control the sector from which the destination waypoint
may be reached.

* skip_segments (1ist [int]) — Specifies the segments that should be skipped in the
route calculation. A segment is the connection between two given coordinates and the count-
ing starts with 1 for the connection between the first and second coordinate.

* continue_straight (boolean) - Forces the route to keep going straight at waypoints
restricting u-turns even if u-turns would be faster. This setting will work for all profiles
except for driving-*. In this case you will have to set optimized=false for it to work. True
or False. Default False.

* elevation (boolean) - Specifies whether to return elevation values for points. Default
False.

* extra_info (Iist or tuple of strings) - Returns additional information on
[“steepness”, “suitability”, “surface”, “waycategory”, “waytype”, “tollways”, “traildiffi-

LEINTS

culty”, “roadaccessrestrictions”’]. Must be a list of strings. Default None.

* suppress_warnings (bool)-Tells the system to not return any warning messages and
corresponding extra_info. For false the extra information can still be explicitly requested by
adding it with the extra_info parameter.

* optimized (bool) - If set False, forces to not use Contraction Hierarchies.

* options (dict) — Refer to https://openrouteservice.org/dev/#/api-docs/v2/
directions/{profile}/geojson/post for detailed documentation. Construct your own
dict() following the example of the minified options object. Will be converted to json
automatically.

* optimize_waypoints (bool) — If True, a Vroom instance (ORS optimization end-
point) will optimize the via waypoints, i.e. all coordinates between the first and the last.
It assumes the first coordinate to be the start location and the last coordinate to be the end
location. Only requests with a minimum of 4 coordinates, no routing options and fastest
weighting. Default False.

9.2. Library reference 39

https://openrouteservice.org/dev/#/api-docs/v2/directions
https://openrouteservice.org/dev/#/api-docs/v2/directions
https://github.com/VROOM-Project/vroom

openrouteservice-py Documentation, Release 0.4

* validate (bool) — Specifies whether parameters should be validated before sending the
request. Default True.

* dry_run - Print URL and parameters without sending the request.
e dry_run - boolean
Raises
* ValueError — When parameter has wrong value.
* TypeError — When parameter is of wrong type.
Returns sanitized set of parameters

Return type call to Client.request()

9.2.5 openrouteservice.isochrones module

Performs requests to the ORS isochrones APIL

openrouteservice.isochrones.isochrones (client, locations, profile="driving-car’,
range_type="time’, range=None, intervals=None,
segments=None, interval=None, units=None,
location_type=None, smoothing=None, at-

tributes=None, validate=True, dry_run=None)
Gets travel distance and time for a matrix of origins and destinations.

Parameters
* locations (1ist or tuple of lng,lat values)- One pair of Ing/lat values.

* profile (string)— Specifies the mode of transport to use when calculating directions.
One of [“driving-car”, “driving-hgv”, “foot-walking”, “foot-hiking”, “cycling-regular”,

ELINNT3

“cycling-road”, “cycling-mountain”, “cycling-electric”,]. Default “driving-car”.
* range_type — Set ‘time’ for isochrones or ‘distance’ for equidistants. Default ‘time’.
* intervals (1ist of integer (s))—[SOON DEPRECATED] replaced by range.

* range (1ist of integer (s))—Ranges to calculate distances/durations for. This can
be a list of multiple ranges, e.g. [600, 1200, 1400] or a single value list. In the latter case,
you can also specify the ‘interval’ variable to break the single value into more isochrones.
In meters or seconds.

* segments (integer) - [SOON DEPRECATED] replaced by interval.

* interval (integer)— Segments isochrones or equidistants for one ‘range’ value. Only
has effect if used with a single value ‘range’ value. In meters or seconds.

* units (string)— Specifies the unit system to use when displaying results. One of [“m”,
“km”, “m”]. Default “m”.

* location_type (string)— ‘start’ treats the location(s) as starting point, ‘destination’
as goal. Default ‘start’.

* smoothing (fIloat)— Applies a level of generalisation to the isochrone polygons gener-
ated. Value between 0 and 1, whereas a value closer to 1 will result in a more generalised
shape.

* attributes (list of string(s))— ‘area’ returns the area of each polygon in its
feature properties. ‘reachfactor’ returns a reachability score between 0 and 1. ‘total_pop’

40 Chapter 9. Indices and tables

openrouteservice-py Documentation, Release 0.4

returns population statistics from https://ghsl.jrc.ec.europa.eu/about.php. One or more of
[‘area’, ‘reachfactor’, ‘total_pop’]. Default ‘area’.

* validate (bool) — Specifies whether parameters should be validated before sending the
request. Default True.

* dry_run - Print URL and parameters without sending the request.
* dry_run - boolean
Raises ValueError — When parameter has invalid value(s).

Return type call to Client.request()

9.2.6 openrouteservice.distance_matrix module

Performs requests to the ORS Matrix APL.

openrouteservice.distance_matrix.distance_matrix (client, locations, profile="driving-
car’, sources=None, destina-
tions=None, metrics=None, re-
solve_locations=None, units=None,
optimized=None, validate=True,

dry_run=None)
Gets travel distance and time for a matrix of origins and destinations.

Parameters

* locations (a single location, or a list of locations, where a
location is a list or tuple of lng,lat values)-One or more pairs of
Ing/lat values.

* profile (string)— Specifies the mode of transport to use when calculating directions.
One of [“driving-car”, “driving-hgv”, “foot-walking”, “foot-hiking”, “cycling-regular”,
“cycling-road”, “cycling-safe”, “cycling-mountain”, “cycling-tour”, ‘“cycling-electric”,].
Default “driving-car”.

* sources (1ist or tuple)-— A listof indices that refer to the list of locations (starting
with 0). If not passed, all indices are considered.

* destinations (1ist or tuple)— A list of indices that refer to the list of locations
(starting with 0). If not passed, all indices are considered.

* metrics (1ist of strings) - Specifies a list of returned metrics. One or more of
[“distance”, “duration”]. Default [‘duration’].

* resolve_locations (boolean) — Specifies whether given locations are resolved or
not. If set ‘true’, every element in destinations and sources will contain the name element
that identifies the name of the closest street. Default False.

* units (string) - Specifies the unit system to use when displaying results. One of [“m”,
“km”, “m”]. Default “m”.

* optimized (boolean) — Specifies whether Dijkstra algorithm (‘false’) or any available
technique to speed up shortest-path routing (‘true’) is used. For normal Dijkstra the number
of visited nodes is limited to 100000. Default True

* validate (bool) — Specifies whether parameters should be validated before sending the
request. Default True.

* dry_run - Print URL and parameters without sending the request.

9.2. Library reference a1

https://ghsl.jrc.ec.europa.eu/about.php

openrouteservice-py Documentation, Release 0.4

dry_run - boolean

Raises ValueError — When profile parameter has wrong value.

Return type call to Client.request()

9.2.7 openrouteservice.geocode module

Performs requests to the ORS geocode API (direct Pelias clone).

openrouteservice.geocode.pelias_autocomplete (client, text, focus_point=None,
rect_min_x=None, rect_min_y=None,
rect_max_x=None, rect_max_y=None,
country=None, sources=None, lay-

ers=None, validate=True, dry_run=None)

Autocomplete geocoding can be used alongside /search to enable real-time feedback. It represents a type-ahead
functionality, which helps to find the desired location, without to require a fully specified search term.

This endpoint queries directly against a Pelias instance. For fully documentation, please see https://github.com/
pelias/documentation/blob/master/autocomplete.md

Parameters

Raises

text (string)— Full-text query against search endpoint. Required.

focus_point — Focusses the search to be around this point and gives results within a 100
km radius higher scores.

rect_min_x (float)— Min longitude by which to constrain request geographically.
rect_min_y (fIloat)— Min latitude by which to constrain request geographically.
rect_max_x (float)— Max longitude by which to constrain request geographically.
rect_max_y (float)— Max latitude by which to constrain request geographically.

country (st r)— Constrain query by country. Accepts a alpha-2 or alpha-3 digit ISO-3166
country codes.

sources (list of strings)— The originating source of the data. One or more of
[‘osm’, ‘oa’, ‘wof’, ‘gn’]. Currently only ‘osm’, ‘wof” and ‘gn’ are supported.

layers (1ist of strings)- The administrative hierarchy level for the query. Refer
to https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type for
details.

dry_run — Print URL and parameters without sending the request.

dry_run - boolean

ValueError — When parameter has invalid value(s).

TypeError — When parameter is of the wrong type.

Return type dict from JSON response

openrouteservice.geocode.pelias_reverse (client, point, circle_radius=None, sources=None,

layers=None, country=None, size=None, vali-
date=True, dry_run=None)

Reverse geocoding is the process of converting geographic coordinates into a human-readable address.

This endpoint queries directly against a Pelias instance.

42

Chapter 9. Indices and tables

https://github.com/pelias/documentation/blob/master/autocomplete.md
https://github.com/pelias/documentation/blob/master/autocomplete.md
https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type

openrouteservice-py Documentation, Release 0.4

Parameters

point (Iist or tuple of [Lon, Lat])- Coordinate tuple. Required.
circle_radius (integer) — Radius around point to limit query in km. Default 1.

sources (Ilist of strings) — The originating source of the data. One or more of
[‘osm’, ‘0a’, ‘wof’, ‘gn’]. Currently only ‘osm’, ‘wof” and ‘gn’ are supported.

layers (1ist of strings)- The administrative hierarchy level for the query. Refer
to https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type for
details.

country (st r)— Constrain query by country. Accepts a alpha-2 or alpha-3 digit ISO-3166
country codes.

size (integer)— The amount of results returned. Default 10.
dry_run — Print URL and parameters without sending the request.

dry_run - boolean

Raises ValueError — When parameter has invalid value(s).

Return type dict from JSON response

openrouteservice.geocode.pelias_search (client, text, focus_point=None, rect_min_x=None,

rect_max_x=None,
circle_point=None, cir-
sources=None, layers=None,
size=None, validate=True,

rect_min_y=None,
rect_max_y=None,
cle_radius=None,
country=None,
dry_run=None)

Geocoding is the process of converting addresses into geographic coordinates.

This endpoint queries directly against a Pelias instance.

Parameters

text (string) - Full-text query against search endpoint. Required.

focus_point — Focusses the search to be around this point and gives results within a 100
km radius higher scores.

rect_min_x (float) - Min longitude by which to constrain request geographically.
rect_min_y (float)— Min latitude by which to constrain request geographically.
rect_max_x (float)— Max longitude by which to constrain request geographically.
rect_max_y (float)— Max latitude by which to constrain request geographically.

circle_point (1ist or tuple of (Long, Lat))-Geographical constraintin
form a circle.

circle_radius (integer) — Radius of circle constraint in km. Default 50.

sources (1ist of strings) - The originating source of the data. One or more of
[‘osm’, ‘oa’, ‘wof’, ‘gn’]. Currently only ‘osm’, ‘wof” and ‘gn’ are supported.

layers (list of strings)— The administrative hierarchy level for the query. Refer
to https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type for
details.

country (st r)— Constrain query by country. Accepts a alpha-2 or alpha-3 digit ISO-3166
country code.

size (integer)— The amount of results returned. Default 10.

9.2. Library reference

43

https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type
https://github.com/pelias/documentation/blob/master/search.md#filter-by-data-type

openrouteservice-py Documentation, Release 0.4

* dry_run - Print URL and parameters without sending the request.
* dry_run - boolean
Raises
* ValueError — When parameter has invalid value(s).
* TypeError — When parameter is of the wrong type.
Return type call to Client.request()

openrouteservice.geocode.pelias_structured (client, address=None, neighbourhood=None,
borough=None, locality=None, county=None,
region=None, postalcode=None, coun-

try=None, validate=True, dry_run=None)
With structured geocoding, you can search for the individual parts of a location. Structured geocoding is an

option on the search endpoint, which allows you to define a query that maintains the individual fields.

This endpoint queries directly against a Pelias instance. For full documentation, please see https://github.com/
pelias/documentation/blob/master/structured- geocoding.md

Parameters
* address (string)—Can contain a full address with house number or only a street name.

* neighbourhood (string) — Neighbourhoods are vernacular geographic entities that
may not necessarily be official administrative divisions but are important nonetheless.

Check all passed arguments convert._is_valid_args(locals())
Parameters

* borough (string)— Mostly known in the context of New York City, even though they
may exist in other cities.

* locality (string) — Localities are equivalent to what are commonly referred to as
cities.

* county (string)— Administrative divisions between localities and regions. Not as com-
monly used in geocoding as localities, but useful when attempting to disambiguate between
localities.

* region (string) — Normally the first-level administrative divisions within countries,
analogous to states and provinces in the United States and Canada. Can be a full name or
abbreviation.

* postalcode (integer)-Dictated by an administrative division, which is almost always
countries. Postal codes are unique within a country.

* country (string) — Highest-level divisions supported in a search. Can be a full name
or abbreviation.

* dry_run - Print URL and parameters without sending the request.
* dry_run - boolean
Raises TypeError — When parameter is of the wrong type.

Return type dict from JSON response

9.2.8 openrouteservice.elevation module

Performs requests to the ORS elevation API.

44 Chapter 9. Indices and tables

https://github.com/pelias/documentation/blob/master/structured-geocoding.md
https://github.com/pelias/documentation/blob/master/structured-geocoding.md

openrouteservice-py Documentation, Release 0.4

openrouteservice.elevation.elevation_line (client, format_in, geometry, for-
mat_out="geojson’, dataset="srtm’, vali-
date=True, dry_run=None)
POSTs 2D point to be enriched with elevation.

Parameters

* format_in (string) — Format of input geometry. One of [‘geojson’, ‘polyline’, ‘en-
codedpolyline’]

* geometry (depending on format_in, either list of coordinates,
LineString geojson or string)-— Point geometry

* format_out (string)— Format of output geometry, one of [‘geojson’, ‘polyline’, ‘en-
codedpolyline’]

* dataset (string)— Elevation dataset to be used. Currently only SRTM v4.1 available.
* dry_run - Print URL and parameters without sending the request.
* dry_run - boolean

Returns correctly formatted parameters

Return type Client.request()

openrouteservice.elevation.elevation_point (client, format_in, geometry, for-
mat_out="geojson’, dataset="srtm’, vali-
date=True, dry_run=None)
POSTs 2D point to be enriched with elevation.

Parameters
* format_in (string)— Format of input geometry. One of [‘geojson’, ‘point’]

* geometry (depending on format_in, either list of coordinates
or Point geojson)— Point geometry

* format_out (string) - Format of output geometry, one of [‘geojson’, ‘point’]
* dataset (string)— Elevation dataset to be used. Currently only SRTM v4.1 available.
* dry_run - Print URL and parameters without sending the request.
* dry_run —boolean
Returns correctly formatted parameters

Return type Client.request()

9.2.9 openrouteservice.places module

Performs requests to the ORS Places API.

openrouteservice.places.places (client, request, geojson=None, bbox=None, buffer=None, fil-
ter_category_ids=None, filter_category_group_ids=None, fil-
ters_custom=None, limit=None, sortby=None, validate=True,

dry_run=None)
Gets POT’s filtered by specified parameters.

Parameters

* request (string) — Type of request. One of [‘pois’, ‘list’, ‘stats’]. ‘pois’: returns
geojson of pois; ‘stats’: returns statistics of passed categories; ‘list’: returns mapping of
category ID’s to textual representation.

9.2. Library reference 45

openrouteservice-py Documentation, Release 0.4

* geojson (dict)— GeoJSON dict used for the query.
* buffer — Buffers geometry of ‘geojson’ or ‘bbox’ with the specified value in meters.

* filter category_ids — Filter by ORS custom category IDs. See https://github.com/
GIScience/openrouteservice-docs#places-response for the mappings.

* filter category_group_ids — Filter by ORS custom high-level category groups.
See https://github.com/GIScience/openrouteservice-docs#places-response for the map-

pings.

* filters_custom (dict of lists/str)— Specify additional filters by key/value.
Default ORS filters are ‘name’: free text ‘wheelchair’: [‘yes’, ‘limited’, ‘no’, ‘designated’]
‘smoking’: [‘dedicated’,’yes’, separated’,’isolated’, ‘no’, ‘outside’] ‘fee’: [‘yes’,’no’, ‘str’]

* limit (integer base_url="http://localhost:5000’) — limit for POI queries.

* sortby (string) — Sorts the returned features by ‘distance’ or ‘category’. For re-
quest="pois’ only.

* dry_run - Print URL and parameters without sending the request.
* dry_run - boolean

Return type call to Client.request()

9.2.10 openrouteservice.optimization module

Performs requests to the ORS optimization API.

class openrouteservice.optimization.Job (id, location=None, location_index=None, ser-
vice=None, amount=None, skills=None, prior-
ity=None, time_windows=None)
Bases: object

Class to create a Job object for optimization endpoint.

Full documentation at https://github.com/VROOM-Project/vroom/blob/master/docs/ API.md#jobs.

class openrouteservice.optimization.Shipment (pickup=None, delivery=None,
amount=None, skills=None, prior-
ity=None)

Bases: object
Class to create a Shipment object for optimization endpoint.
Full documentation at https://github.com/VROOM-Project/vroom/blob/master/docs/ API.md#shipments.

class openrouteservice.optimization.ShipmentStep (id=None, location=None, loca-
tion_index=None, service=None,

time_windows=None)
Bases: object

Class to create a Shipment object for optimization endpoint.

Full documentation at https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#shipments.

class openrouteservice.optimization.Vehicle (id, profile="driving-car’, start=None,
start_index=None, end=None,
end_index=None, capacity=None,

skills=None, time_window=None)
Bases: object

Class to create a Vehicle object for optimization endpoint.

46 Chapter 9. Indices and tables

https://github.com/GIScience/openrouteservice-docs#places-response
https://github.com/GIScience/openrouteservice-docs#places-response
https://github.com/GIScience/openrouteservice-docs#places-response
http://localhost:5000
https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#jobs
https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#shipments
https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#shipments

openrouteservice-py Documentation, Release 0.4

Full documentation at https://github.com/VROOM-Project/vroom/blob/master/docs/ API.md#vehicles.

openrouteservice.optimization.optimization (client, jobs=None, vehicles=None, ship-
ments=None, matrix=None, geometry=None,

dry_run=None)
Optimize a fleet of vehicles on a number of jobs.

For more information, visit https://github.com/VROOM-Project/vroom/blob/master/docs/API.md.

Example:

>>> from openrouteservice import Client, optimization

>>> coordinates = [[8.688641, 49.420577], [8.680916, 49.415776]]

>>> jobs, vehicles = list (), list()

>>> for idx, coord in enumerate (coordinates):
jobs.append (optimization.Job (id=idx, location=coord))
vehicles.append (optimization.Vehicle (id=idx, location=coord))

>>> api = Client (key='somekey')
>>> result = api.optimization (jobs=jobs, vehicles=vehicles)
Parameters

* jobs (1ist of Job)—The Job objects to fulfill.

* vehicles (1ist of Vehicle) - The vehicles to fulfill the openrouteservice.
optimization.Job’s.

shipments (1ist of Shipment)— The Shipment objects to fulfill.

* matrix (list of lists of int)— Specify a custom cost matrix. If not specified,
it will be calculated with the openrouteservice.matrix.matrix () endpoint.

geometry (bool) — If the geometry of the resulting routes should be calculated. Default
False.

* dry_run - Print URL and parameters without sending the request.
* dry_run - boolean
Returns Response of optimization endpoint.

Return type dict

9.2.11 openrouteservice.exceptions module

Defines exceptions that are thrown by the ORS client.

exception openrouteservice.exceptions.ApiError (status, message=None)
Bases: exceptions.Exception

Represents an exception returned by the remote API.

exception openrouteservice.exceptions.HTTPError (status_code)
Bases: exceptions.Exception

An unexpected HTTP error occurred.

exception openrouteservice.exceptions.Timeout
Bases: exceptions.Exception

The request timed out.

9.2. Library reference a7

https://github.com/VROOM-Project/vroom/blob/master/docs/API.md#vehicles
https://github.com/VROOM-Project/vroom/blob/master/docs/API.md

openrouteservice-py Documentation, Release 0.4

exception openrouteservice.exceptions.ValidationError (errors)
Bases: exceptions.Exception

Something went wrong during cerberus validation

9.2.12 Module contents

openrouteservice.get_ordinal (number)
Produces an ordinal (1st, 2nd, 3rd, 4th) from a number

48 Chapter 9. Indices and tables

Python Module Index

o

openrouteservice, 48

openrouteservice.
openrouteservice.
openrouteservice.
openrouteservice.
openrouteservice.
openrouteservice.
openrouteservice.
openrouteservice.
openrouteservice.
openrouteservice.

client, 36
convert, 37
directions, 37
distance_matrix, 41
elevation, 44
exceptions, 47
geocode, 42
isochrones, 40
optimization, 46
places, 45

49

openrouteservice-py Documentation, Release 0.4

50 Python Module Index

Index

A

ApiError, 30, 47

C

Client (class in openrouteservice.client), 19, 36

D

decode_polyline () (in module openrouteser-
vice.convert), 20, 37

directions () (in module openrouteser-
vice.directions), 20, 37

distance_matrix () (in module openrouteser-
vice.distance_matrix), 23, 41

E

elevation_line () (in module openrouteser-
vice.elevation), 27, 44

elevation_point () (in module openrouteser-

vice.elevation), 28, 45

G

get_ordinal () (in module openrouteservice), 30, 48

H

HTTPError, 30, 47

isochrones () (in module
vice.isochrones), 22, 40

openrouteser-

J

Job (class in openrouteservice.optimization), 29, 46

O

openrouteservice (module), 30, 48
openrouteservice.client (module), 19, 36
openrouteservice.convert (module), 20, 37
openrouteservice.directions (module), 20, 37

openrouteservice.distance_matrix (mod-
ule), 23, 41
openrouteservice.
openrouteservice.
openrouteservice.
openrouteservice.
openrouteservice.
46
openrouteservice.places (module), 28, 45
optimization () (in module openrouteser-

vice.optimization), 29, 47

elevation (module), 27, 44
exceptions (module), 30, 47
geocode (module), 24, 42
isochrones (module), 22, 40
optimization (module), 29,

P

pelias_autocomplete () (in module openrouteser-
vice.geocode), 24, 42

pelias_reverse () (in module openrouteser-
vice.geocode), 25, 42
pelias_search () (in module openrouteser-

vice.geocode), 26, 43
pelias_structured() (in module openrouteser-
vice.geocode), 26, 44
places () (in module openrouteservice.places), 28, 45

R

req (openrouteservice.client.Client attribute), 19, 37
request () (openrouteservice.client.Client method),
19, 37

S

Shipment (class in openrouteservice.optimization), 29,
46

ShipmentStep (class in
vice.optimization), 29, 46

openrouteser-

T

Timeout, 30, 47

\Y

ValidationError, 30, 47

51

openrouteservice-py Documentation, Release 0.4

Vehicle (class in openrouteservice.optimization), 29,
46

52 Index

	Description
	Requirements
	Installation
	Testing
	Usage
	Basic example
	Optimize route
	Decode Polyline
	Dry run
	Local ORS instance

	Support
	Acknowledgements
	Library reference
	Submodules
	openrouteservice.client module
	openrouteservice.convert module
	openrouteservice.directions module
	openrouteservice.isochrones module
	openrouteservice.distance_matrix module
	openrouteservice.geocode module
	openrouteservice.elevation module
	openrouteservice.places module
	openrouteservice.optimization module
	openrouteservice.exceptions module
	Module contents

	Indices and tables
	Quickstart
	Description
	Requirements
	Installation
	Testing
	Usage
	Basic example
	Optimize route
	Decode Polyline
	Dry run
	Local ORS instance

	Support
	Acknowledgements

	Library reference
	Submodules
	openrouteservice.client module
	openrouteservice.convert module
	openrouteservice.directions module
	openrouteservice.isochrones module
	openrouteservice.distance_matrix module
	openrouteservice.geocode module
	openrouteservice.elevation module
	openrouteservice.places module
	openrouteservice.optimization module
	openrouteservice.exceptions module
	Module contents

	Python Module Index
	Index

